(x^1/3+z^2/3y^1/3)(x^2/5+z^3/4y^1/3)

Simple and best practice solution for (x^1/3+z^2/3y^1/3)(x^2/5+z^3/4y^1/3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^1/3+z^2/3y^1/3)(x^2/5+z^3/4y^1/3) equation:


x in (-oo:+oo)

((x^1)/3+(y^1*((z^2)/3))/3)*((x^2)/5+(y^1*((z^3)/4))/3) = 0

(x/3+(y*((z^2)/3))/3)*((x^2)/5+(y*((z^3)/4))/3) = 0

(1/3*x+1/9*y*z^2)*(1/5*x^2+1/12*y*z^3) = 0

( 1/3*x+1/9*y*z^2 )

1/3*x+1/9*y*z^2 = 0 // - 1/9*y*z^2

1/3*x = -(1/9*y*z^2) // : 1/3

x = (-(1/9*y*z^2))/1/3

x = -1/3*y*z^2

( 1/5*x^2+1/12*y*z^3 )

1/5*x^2 = -(1/12*y*z^3) // : 1/5

x^2 = -5/12*y*z^3

x^2 = -5/12*y*z^3 // ^ 1/2

abs(x) = (-5/12)^(1/2)*y^(1/2)*z^(3/2)

x = (-5/12)^(1/2)*y^(1/2)*z^(3/2) or x = -((-5/12)^(1/2)*y^(1/2)*z^(3/2))

x in { -1/3*y*z^2, (-5/12)^(1/2)*y^(1/2)*z^(3/2), -((-5/12)^(1/2)*y^(1/2)*z^(3/2)) }

See similar equations:

| [9(p+5)-17]-[2(p-4)+3]= | | 1/8y=6 | | 613-4x=32x+23 | | 1/8-k/9=7/72 | | 9r+3=93 | | -2(7x-2)+9x=4+2(5x-9) | | z/4=z/7+3 | | X^3-2x^2+x-0.01=0 | | z/2-z=3 | | 4+8=10+5 | | -16-6=x-8 | | 3(n+1)-2=2(n+1)+n-1 | | 7/5x+3/5x=2/x | | x+5x=36 | | 7/12=-4/x | | 7/5x+3/5x | | 3(w-3)-9=-3(-8w+7)-6w | | -q=14 | | -2(w+5)=2w-8+2(5w+5) | | 3=p-3 | | -1/12=x-8/9 | | 4(12x+3)=16x+3-8x+9 | | 2(x+3)-3(x+5)=3(x-2)-7 | | 19x-5/13-18x=5/13+13/13 | | x+25938384834598=3.14159265359 | | x+25938384834598=314159265359 | | 3(2y-2)-2(y+6)=0 | | 9w+2-2(-3w-4)=3(w-2) | | 7+3n-5k+8n=4k+66k-55n | | 3x+52x-34=25 | | 3x^3-9x+6=0 | | 70d+630=124-(-566d) |

Equations solver categories